\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

For problems 1 and 2, find the radius of convergence and interval of convergence of the following series:

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 5^{n}} x^{n}$
2. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^{n}}(x+6)^{n}$

For problems 3 and 4, evaluate the following indefinite integral as a power series:
3. $\int \tan ^{-1} x d x$
4. $\int \frac{d x}{1+x^{11}}$

For problems 5 and 6 , using the definition of Taylor series, compute the Taylor series of $f(x)$ at the given point a.
5. $f(x)=\sqrt{x}$ at $a=16$.
6. $f(x)=e^{-2 x}$ at $a=1$.

For problems 7 and 8, find the points on the curve where the tangent is horizontal or vertical.
7. $x=t^{3}-3 t$ and $y=t^{3}-3$
8. $x=\cos \theta$ and $y=\cos (3 \theta)$

For problems 9 and 10, find the area of the region that lies inside both curves.
9. $r=1+\cos \theta$ and $r=1-\cos \theta$
10. $r=a \sin \theta$ and $r=b \cos \theta$ where $a, b>0$

For problems 11 and 12, find the exact length of the polar curve.
11. $r=2 \sin \theta$ for $0 \leq \theta \leq 2 \pi$
12. $r=2(1+\cos \theta)$
13. Show that if $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=c$ where $c \neq 0$, then the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} c_{n} x^{n}
$$

is $R=\frac{1}{c}$.

